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• IoT platform for the management of energy data in buildings.
• Includes several inner features to support data analytics in the energy domain.
• Based on the open IoT initiative FIWARE.
• Evaluated in a real pilot with comprising several buildings.
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a b s t r a c t

Buildings are key players when looking at end-use energy demand. It is for this reason that during the last
few years, the Internet of Things (IoT) has been considered as a tool that could bring great opportunities
for energy reduction via the accurate monitoring and control of a large variety of energy-related agents in
buildings. However, there is a lack of IoT platforms specifically oriented towards the proper processing,
management and analysis of such large and diverse data. In this context, we put forward in this paper the
IoT Energy Platform (IoTEP) which attempts to provide the first holistic solution for the management of
IoT energy data. The platformwe showhere (that has been based on FIWARE) is suitable to include several
functionalities and features that are key when dealing with energy quality insurance and support for data
analytics. As part of thiswork,wehave tested the platform IoTEPwith a real use case that includes data and
information from three buildings totalizing hundreds of sensors. The platform has exceed expectations
proving robust, plastic and versatile for the application at hand.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Several reports claim that residential and commercial buildings
represent around 30%–40% of the overall energy consumption in
Europe and in the United States [1,2]. Because of this, buildings
are known to be the largest end-use energy contributor followed
by transport and industry, and therefore they are a clear target for
potentially reducing global energy consumption substantially.

Despite being great consumers, there is some evidence that
shows that public and private buildings have not fully exploited
all opportunities available to increase their energy efficiency. On
the contrary, they suffer from a rather substantial energy waste
that is partly due to inefficient heating, cooling, lighting and other
power system (equipment) [3], due to bad use of the systems
(behavior) [4] and due to poor fabric efficiency [5]. Although the
implementations of measurements to improve the first or the
third category can be rather expensive, it has been seen that soft
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measurements that focus on the change of behavior of buildings’
users are cheap, but yet, can contribute greatly to the reduction of
energy use [6].

In order to address the aforementioned inefficiencies due to
lack of understanding on how the systems should be operated and
other behavioral related aspects in the building sector, one could
consider the use of Information and Communication Technologies
(ICT) and,more specifically, of the Internet of Things (IoT). This new
paradigm that also exists at the domestic level could be used as an
instrument to make a realization of the so called Smart Building. In
fact, it is foreseen that from2 to 3 houses out of 10will be equipped
with up to 500 smart devices in the near future [7].

The installation of smart meters and In Home Energy Displays
to make households aware of their energy consumption is not
new [8,9]. The adoption of these devices seems to be an opportu-
nity to exploit them for the reduction of energy usewhen looking at
the available scientific literature (will be detailed later). However,
onemay also think that the technological effort to deploy such sys-
tems may be substantial and become a barrier to achieve this level
of technification of the buildings. Nevertheless this technification
seems to be happening naturally.

http://dx.doi.org/10.1016/j.future.2017.08.046
0167-739X/© 2017 Elsevier B.V. All rights reserved.
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The large amounts of IoT data that will be coming from build-
ings in the near expected future will have to be analyzed to reveal
insights that could help to obtain, expose and understand knowl-
edge from buildings. In turn, this derived knowledge should be
able to help to achieve meaningful energy saving strategies and
interventions in the targeted buildings [10].

These wealth of information about energy use, offers a great
opportunity according to some literature on energy feedback that
suggests that intelligent feedback, (that with an extra larger of
computation over simple observation) is an effective technique for
the reduction of energy demands via behavioral change [11]. Only
with a platform capable of making this possible, the implementa-
tion of this new paradigm will be successful.

In the IoT ecosystem, several platforms have emerged providing
support from the sensorization stage to the stage of management
and storage of the data in different forms [12]. In that sense, one of
themost large-scale affords is the FIWAREplatform, a key initiative
of the Future Internet Public–Private Partnership (PPP) to create a
well-aligned set of open enablers to receive, process, contextualize
and publish IoT data from and for smart cities including from city-
wide information to dwelling specific data.1

Despite all the reasons exposed before, little efforts have been
made so far in order to adapt such platforms to building energy
management. This energy ecosystem comprises a set of particular-
ities that should be targeted in a specific manner. After analyzing
the few examples of studies that have tried to tackle this problem,
one can see that it exists a pressing need to apply different data
mining techniques in the building energy domain mainly focusing
on consumption prediction and pattern discovery or failure toler-
ance [13]. Thus, IoT energy platforms should include functions for
data analysis among their features.

Although giving insighting knowledge behind data is an in-
strumental aspect of the wealth produced by the IoT, existing
platforms are still limited when it comes to integrate data pro-
cessing and analytic techniques suitable for IoT ecosystems [14].
This is a fundamental limitation of the state of the art as it is key
to ensure that the platform will work on the new paradigm of
providing tailored, real-time energy feedback to people. This also
includes features to support the easy extension of platforms to
allocate new data mining techniques comprising common steps
in the data mining process. Examples of such features are built-
in data-cleaning mechanisms for data pre-processing and storage
solutions that would facilitate the execution of online and offline
data mining algorithms.

All the aforementioned limitations have motivated us to envi-
sion, design, develop and validate what we called the IoT Energy
Platform (IoTEP). The key strength of IoTEP is that it is, to our
knowledge, the first holistic solution to large scale building energy
data management from IoT.

Unlike existing IoT platforms, IoTEP is mainly oriented to sup-
port and ease the analysis of large amounts of heterogeneous
energy data. A simplified overview of the platform IoTEP is shown
in Fig. 1 representing its key features.

To begin with, IoTEP has been designed to easily retrieve either
the most up-to-date readings of each sensor within a building,
or to retrieve the historic data from such sensors. By means of
these two types of access, the platform facilitates the application
of both online and offline data analyses over the collected data. As
we will see on further sections, this functionality is implemented
with two FIWARE storage components, the ORION context broker
and COMET. For both enablers, a NGSI-based information model
has been defined in order to homogenize all the measured energy-
related data.

1 https://catalogue.fiware.org/.

Secondly, a real-time data cleaning module has been designed
as a built-in component of IoTEP. With this, sensor readings are
filtered by discarding potential outliers before injecting them in
the storage components. This ensures a more efficient use of the
resources. For this feature, we have followed a Complex Event
Processing (CEP) approach that allows the real-time processing of
event streams.

In addition to the above mentioned features, the platform in-
cludes also a mechanism to detect volatility changes in the incom-
ing energy data. This mechanism intends to perceive meaningful
shifts in such data that might need to re-launch the data-mining
services that run within the platform.

Finally, IoTEP features a novel mechanism to automatically
identify high-level areas in a building with certain energy-related
similarities bymeans of clustering techniques. The benefit of these
virtual areas is twofold. Firstly, they provide alternative represen-
tations of the energy status of a building beyond its physical struc-
ture; and secondly, they can help in the performance of other data
mining analyses by reducing redundancies and defining different
granularity levels in the captured sensor data.

Summarizing, the platform presented in this paper intends to
be the first stage towards the full adaptation of the IoT paradigm
in the retrieval, management and, above all, analysis of energy data
in buildings. Considering the need of developing tools that are able
to provide personalized real time feedback to change behaviors,
and with them, have the potential to reduce energy use, IoTEP is
intended to become the stepping stone for the development of such
tools.

The paper is structured as it follows: Section 2 provides an
overview of the state of the art in this research area. Section 3
looks into the IoT energy platform, including its architecture and
its functional modules. Section 4 provides an evaluation of some
of the features of the platform; and Section 5 concludes the paper
with some final remarks and conclusions.

2. Related work

The present work is based upon two different lines of research,
the management of energy data and the implementation of IoT
platforms. Consequently, an overview of both lines is put forward
in this section.

2.1. Energy data management systems

During the last years, some initiativeswithin the cloud comput-
ing domain have been made to intelligently manage energy data
of buildings. In that sense, Zhou et al. [15] described a model for
big-data energy management ranging from the collection and pre-
processing of data to its further analysis and the final exposition to
services. However, it only provides a theoretical approach.

From a practical perspective, the Dynamic Demand Response
(D2R) platform [16] makes use of public and private clouds com-
binedwith infrastructure and platformas a service for data storage.
This platform was extended with Cryptonite, a repository to store
sensitive Smart Griddata [17]. Then, different classes of data-driven
forecasting models were generated on top of the whole platform
with the purpose of carrying out energy prediction among others.

ElasticStream also provides a prototype solution for energy data
management and analysis. In this case, the proposed mechanism
transfers energy data to a cloud platform for further analysis on
the basis of rate changes in the input data streams [18]. Moreover,
Vastardis et al. [19] described a centralized architecture to mon-
itor energy consumption in houses including features of pattern-
matching related to the behavioral habits of the target users.

In the work of Ozadowicz [20], the authors propose differ-
ent approaches to calculate the power demand related to energy

https://catalogue.fiware.org/
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Fig. 1. Conceptual view of the IoT Energy Platform (IoTEP).

consumption using time-driven and event-driven mechanisms for
Building Automation and Control Systems. Their Building Energy
Management Systems (BEMS) implementation is realized with
an IoT platform, introduced by Echelon Corp that includes chips,
stacks, communication, application interfaces (API) and manage-
ment software. Their approaches to calculate the energy demand
are based in time (fixed or sliding length of the timewindowswith
the possibility of overlapping) and in events (occupancy).

The MultiAgent System (MAS) named SAVES (Sustainable mul-
tiAgent systems for optimizing Variable objectives including En-
ergy and Satisfaction) defined in [21] is used in [22] regarding
actual occupant preferences and schedules, actual energy con-
sumption and loss data measured from a real test bed building
at the University of Southern California in order to predict energy
consumption at different levels (frequency of prediction anddevice
aggregation).

Other works provide energy data management solutions with-
out focusing on analytic aspects. This is the case of the Virtual
SCADA architecture for cloud computing (VS-Cloud) that encom-
passes Cloud Computing for energy data storage [23]. VS-Cloud
mainly focuses on the orchestration of components in Smart Grids
and the safety storage of sensitive data executed actions, incidents
or alarms. Therefore, its domain of application is more related to
risk management.

Similarly, the work in [24] proposes an automation platform
for energy monitoring. However, such platform does not provide
any particular feature to support energy data analytics as it focuses
more on the definition of control strategies for energy saving.

Unlike the aforementioned initiatives, our work provides a
holistic energy data management and analysis solution. Our plat-
form also follows an open approach by relying on the well-
established FIWARE initiative. In that sense, the present work in-
cludes explicit features like data volatility monitoring and outliers
detection to ease the deployment of data mining algorithms and
other services over of the stored data.

FIWARE brings other advantages with respect to previous solu-
tions: firstly, thewhole platform orchestration is done bymeans of
lightweight RESTful APIs, that facilitate its further extension; and
secondly, the definition of an information model compliant with
NGSI standard allows to come up with a homogeneous view of
the energy-related data within a building. This feature is key to
exploit the potential of gathering energy data. What we propose
here is not only an archive of data, but a comprehensive flexible
and powerful tool that will serve as the breeding ground for the

creation of context-aware tailored energy feedback platforms that
could be realized at a scale never considered before, even reaching
national levels.

2.2. IoT platforms

The Internet of Things paradigm is the second pillar of this
initiative. All the literature indicates that small devices connected
to the internet in buildings will be the norm in the near future.
With the right algorithms and communication mechanisms, this
situationwill enable themonitoring and characterization of energy
behaviors and energy consumption in buildings.

The need of effective instantiation of IoT under realistic con-
ditions has generated a varied ecosystem of methodologies and
tools taking the form of integrated IoT platforms. In that sense,
it is possible to find several surveys in the literature that review
existing proprietary and open-source platforms in the IoT ecosys-
tem [12,14,25]. Other important aspects like data ownership, se-
curity and privacy [26] or data storage [25] have been also deeply
studied in the IoT domain. The reader is referred to this sources to
expand on the state of the art.

According to such reviews, some relevant IoT platforms follow
a similar open-source and centralized approach alongwith hetero-
geneous sensor support like IoTEP. This is the case of Nimbits2
that provides an open source Java library for developing Java, Web
and Android solutions to connect to a Nimbits Server. This back-
end part enables simple processing of the collected data based on
rules. However, it does not comprise any advanced data-analytics
support. ThingSpeak3 features the acquisition, visualization and
analysis of data but this is done by means of the proprietary
Matlab tool, what may make more difficult the popularization of
the platform.

One feature frequently neglected by existing IoT platforms is
the support of built-in data mining features able to generate new
useful knowledge from the collected and stored data [14]. In real
IoT deployments, this processing and analysis task has been fre-
quently done by third-party services. However, integrating certain
data mining functionalities as built-in features of platforms would
provide a great benefit in a wide range of domains, for exam-
ple: quick statistics, easy to generate digests or sanity checks. In

2 https://www.nimbits.com/.
3 https://thingspeak.com/.
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Fig. 2. IoTEP information model.

that sense, only a few IoT platforms actually include native data-
analytics features. As a matter of fact, SensorCloud4 enables a
simple interface for common operations like smoothing, filtering
and interpolation whereas GroveStreams5 provides some real-
time data analytics mechanisms. However, none of them support
sensor heterogeneity nor follow an open source approach like
IoTEP does.

As for the energy ecosystem, several research lines have already
stated the feasibility and suitability of data analysis in order to
increase energy awareness within a building [13]. In that sense,
IoTEP provides one of the first steps towards such a data-mining
enrichment by providing several features fully focused on easing
the analysis of IoT energy data namely, real-time data cleaning,
data volatility detection and data reduction procedures.

Finally, our work is enclosed within the FIWARE architecture.
The high-level goal of this architecture is to build the Core Platform
of the Future Internet, introducing an innovative infrastructure for
cost-effective creation and delivery of versatile digital services,
providing high QoS and security guarantees. In that sense, FI-
LAB [27] conforms live instances of generic enablers, available to
developers for free experimentation within this technology.

Some initiatives have started to profit from FIWARE in several
domains. One of the most ambitious works is the application
on [28] which established a world-wide semantic interoperability
solution combining the NGSI, which is part of the core of the
FIWARE initiative, and oneM2M context interfaces. Apart from
that, [29] demonstrated the suitability of the FIWARE paradigm to
compose Future-Internet applications by means of the integration
of generic enablers. In a similar manner, [30] put forward a seman-
tic mechanism to integrate data from different types of devices
by also using FIWARE components. Finally, in a more functional
domain, [31] made use of certain enablers, like ORION context
broker, to create a cloud-based gesture recognition application.
Also, [32] describes a sensor management for seaports based on
the FIWARE platform. It is therefore possible to say that our work

4 http://www.sensorcloud.com/.
5 https://grovestreams.com/.

seems to be one of the first efforts to make use of FIWARE enablers
in the building energy domain, and furthermore in the energy
domain in general.

3. IoT Energy Platform (IoTEP)

This section explains in detail the proposed IoTEP solution.
Since the management of the energy data is its key feature, we
firstly describe the information model used to define all the data
within the IoTEP ecosystem; next, we put forward the specific
architecture of the platform that dealswith the energy data accord-
ing to the model.

3.1. Information model

One of the first steps towards the realization of IoTEP was to
define a common information model for the whole platform. Such
a model must be compliant with the NGSI information model
commonly accepted in the FIWARE ecosystem, what facilitates
interconnection with other models and other users. This informa-
tion model follows an entity–attribute approach where entities
represent real or virtual elements of interest. Each entity has a
type what allows to define type-based hierarchies. In this way,
an entity has its own defined attributes and the inherited ones
from its ancestors. The IoTEP information model is depicted in
Fig. 2. The model design follows the UML class notation with two
types of relationships, inheritance and dependence. Each of them
is represented by a different arrow in the figure.Whilst inheritance
indicates that the child element comprises all the attributes of
its parent element, the dependence relationship indicates that an
instance of the element at the arrow’s origin contains an attribute
referencing at one or more instances of the element at the arrow’s
destination.

Focusing on the content of the model, one can find among its
components three key elements related to the energy ecosystem
of a building by means of NGSI entities.

To begin with, the entity building models the target building.
Several operational and architectonic details of the building are
included as attributes on this entity. Examples of information in

http://www.sensorcloud.com/
https://grovestreams.com/
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(a) IoTEP workflow for bootstrap stage.

(b) IoTEP workflow for operational stage.

Fig. 3. Platform general workflow.

this section are: opening hours or building use (e.g., company
headquarters, university faculty, etc.) but also physical relevant
attributes such as fabrics, windows, orientation, and so forth.
Moreover, the spatial region entity defines the geographic region
containing the building. This entity would help to link together
buildings located in similar geographic regions that, as a conse-
quence, might share certain energy-related characteristics. The
inner structure of a building is represented with the building space
area entity. This entity gathers the different spatial areas within a
building (e.g., classrooms, corridors, halls, landings, etc.). Further-
more, a recursive structure of these areas can be made with their
located at attribute to represent, for example, that a classroom is
inside a teaching zone.

This way of introducing data about the buildings and the spaces
will made the communication between a Building Information
Modeling (BIM) platforms and the IoTEP platform straight forward,
what would facilitate the transfer of information among members
of a given team.

The second group of entities refers to the energy sensors de-
ployed in the building and the data they collect. This is modeled
by means of the building sensor, power meter and hvac entities.
Each entity includes the set of attributes monitored by the corre-
sponding energy sensor along with other metadata (e.g., location
of the sensor or timestamp of each observation). The clean version
of these entities refer to the sensor data generated after the data
filtering process as described in Section 3.2.2.

The third group of entities focus on representing sensors that
are not necessarily within the infrastructure of the building but
that may provide useful when collecting energy data. This is the
case, for example, of weather stations reporting conditions of the
building site. As Fig. 2 shows, this is defined by means of the
external sensor and weather conditions entities.

Finally, only the entities in gray in Fig. 2 have instances stored
in ORION and COMET as we will see later.

3.2. Platform architecture

The proposed IoTEP has been structured in four different layers
in an incremental approach (this is shown in Fig. 3). In the upcom-
ing sections, a detailed description of each layer is given.

3.2.1. Sensorization layer
This layer is in charge of connecting physical devices or actu-

ators that are going to provide energy data to the platform. Once
this is done, it maps the collected data to the NGSI entities of the
information model (described in the previous section) and sends
themapped information to the upper homogenization and storage
layer.

For the realization of this layer, we have made use of the
FIWARE IoT Agent enabler [33]. In a nutshell, this enabler allows to
automatically perform the aforementioned data mapping. Differ-
ent types of this enabler support transport protocols to connect to
the physical devices like MQTT.6 or Lightweight M2M (LwM2M)7.

Consequently, during the bootstrapping phase of the platform,
a set of IoT Agents are configured with the NGSI entity type as-
sociated to each of its associated sensor by means of the IoT Agent
Manager (see Fig. 3(a)). In particular, powermeters deployed in the
target building aremapped to the powermeter entity typewhereas
HVAC devices are mapped to the hvac one. Furthermore, we de-
veloped an ad-hoc agent to parse the weather conditions coming

6 http://mqtt.org.
7 http://openmobilealliance.org/iot/lightweight-m2m-lwm2m/.
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from an external third-party weather service to the weather con-
ditions entity on a regular basis. During the operational phase (see
Fig. 3(b)) each time an IoT Agent receives the raw measurements
from a physical device, it inflates the entity instance associated
to the device in upper layer by means of a RESTfull API, in the
homogenization and storage layer (will be described in the next
section).

3.2.2. Homogenization and storage layer
In this layer, all the collected energy data from the previous

layer is conveniently stored in a uniform solution. This way, this
layer addresses the heterogeneity of the incoming energy-related
data. Moreover, it contains real time data cleaning stage what
ensures the quality of the data collected.

Sensor data repository. Regarding the energy-related data storage,
this has been achieved by integrating two FIWARE components.

Firstly, ORION context broker [34] implements a publish–
subscribe store providing data access by means of the NGSI-10
API [35]. In IoTEP, this enabler stores the entity instances of the
information model. By means of the NGSI update operation, IoT
Agents in the sensorization layer update the sensor entities’ at-
tributes in real time with the new readings from the devices.

Secondly, the COMET enabler [36] is used for supporting access
to historic time series data extending the ORION functionality. In
that sense, COMET adheres to the same informationmodel, thus, it
does not require any further data harmonization process. It incor-
porates an ad-hoc API to retrieve raw historical sensor data along
with several built-in simple aggregation functions over such data
(e.g., provide the sum, min or max of the collected observations for
a specific time period).

During the bootstrapping phase of the platform, ORION is ini-
tiated with the static attributes of the entities in the information
model (e.g., ‘identifier’, ‘located at’ or ‘orientation’ attributes) and
COMET subscribes in ORION to the dynamic attributes of the enti-
ties to receive each new value (see Fig. 3(a)).

Sensor data cleaning. Concerning the data quality assurance, we
developed a data cleaning module to remove the outliers that
might be contained in the raw measurements from the sensors. In
that sense, outliers have been reported to be the most prominent
quality issue of energy data [37,38].

This module had two key requirements. To begin with, the data
cleaning processmust be done in a timelymanner in order to avoid
potential bottlenecks. Furthermore, in an IoT ecosystemwe should
expect a great variety of data formats and structure. Thus, such
data cleaning should be done after data homogenization in order
to simplify the overall computational cost of the cleaning stage.

In order to copewith the time-processing constraints, we opted
for following the Complex Event Processing (CEP) paradigm to de-
velop a real-time data cleaningmodule. CEP focuses on timely pro-
cessing streams of information items, so-called events, by filtering,
aggregation or pattern discovery using predefined rules following
the event–condition–action paradigm [39]. In the present setting,
the incoming events are the readings from the energy sensors,
the conditions to be detected are whether a reading should be
considered or not an outlier and the action of the final insertion
of the cleaned data in the storage structure of the platform.

For the outlier definition, we followed a strategy based on
quartiles with fences [40]. In brief, such a strategy extracts the
median, the lower Q1 and upper quartiles Q3 (aka 25th and 75th
percentiles) along with the interquartile range IQ(= Q3 − Q1) of
the data set under study. On the basis of such statistics, two fences
are defined,

• Lower outer fence: Q1 − 3× IQ
• Upper outer fence: Q3 + 3× IQ

This way, a measurement beyond such fences is considered an
extreme outlier.

The translation of this strategy to CEP allows to calculate such
fences incrementally and update their boundaries each time that
a sensor pushes in new data. In particular, two types of CEP rules
were defined. The first one comprises the rules in charge of com-
puting for each sensor the aforementioned statistics with respect
to each of its parameters. For the sake of clarity, the pseudocode
of the CEP rule in charge of calculating the fences for power meter
sensors is shown here and it looks as it follows:

where groupBy and within are two sliding windows. While
groupBy splits the stream of power-meter data with respect each
particular device, within defines a time window to retain the last
power-meter data generated during the last tcleanint time units. After
this, the action part of the rule, generates a new power meter
stats event comprising the percentiles for each sensor’s attribute
considering the data included in the time window. It is important
to note that this rule would fire each time that new power meter
data is injected into the CEP system.

The second set of rules performs the actual extreme outliers
detection. Again, there is one rule per sensor type in charge of this
task. The pseudocode of the CEP rule to detect the outliers in the
power meter data is shown next,

Describing it briefly, this rule fires each time that a new power-
meter reading is received. The condition part of the rule matches
such readingwith its associated statistics and checkswhether each
parameter is contained in its own fences. If that is the case, the
reading is considered that has been cleaned. As a result, the action
part creates a new clean power meter event with the pre-
processed data.

A very similar approach is followed for the HVAC data but, this
time, using the thermostat temperature attribute of this type of
sensor in order to give rise to clean hvac events.

The implementation of this CEPmechanismhas beenmadewith
the Perseo FIWARE enabler [41]. This component incorporates a
CEP engine and an SQL-based event processing language to define
and execute the CEP rules. Furthermore, it leverages the publish-
subscription capabilities of ORION. This way, the engine receives
each entity instance, which data has been just updated in ORION,
as incoming events; and the cleaned events generated by the rules,
automatically update their associated entities in ORION (Fig. 3(b)).
Hence, during the bootstrapping phase (see Fig. 3(a)) this compo-
nent is configured with the rules to be executed and the list of
entities in ORION to subscribe (in this case, power meter and hvac
entities).
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Fig. 4. Workflow of the cleaning of power meter readings.

Finally, Fig. 4 shows an illustrative example of the workflow of
the CEP cleaning mechanism and its connection with the sensor
data repository. As this figure depicts, each raw sensor reading
coming from the IoT Agents is initially stored in ORION by updating
its associated building sensor instance. In the figure’s scenario, a
new power-meter reading will update the power meter instance
representing the sender’s sensor (steps 1 and 2 in the figure).

Next, ORION automatically notifies to the data cleaningmodule
the new reading (step 3). This notification fires the two types of
CEP rules described before (steps 4 and 5). At the end, the module
outcome takes the form of a clean power meter event that
updates the associated clean power meter instance in ORION. This
clean power meter instance represents the cleaned version of the
power meter sensor updated in step 2. Moreover, we should note
that all the aforementioned interactions occur following a push-
style communication enabling the real-time processing.

3.2.3. Analytics support layer
The third layer of the platform embraces all the functionalities

of the platform to provide support for data mining services that
can run on top of the platform. In particular, two features have
been included in this layer, an energy data volatility detector and
a virtual entities generator.

Virtual energy building areas generator (VEBAG). The amount of
data thatwe are able to collect in smart buildings bymeans of large
sensor networks sometimes does not increase the information vol-
ume because of redundancy. Depending on its nature, this redun-
dancy is treated using different approaches: redundancy detection,
data compression, feature extraction, and some others [42].

IoTEP works under the hypothesis that a clever way to reduce
the number of variables taking part in the models can not only
decrease the computation costs but also increase the accuracy on
predictions and classification. In this way, the creation of abstract
entities will be justified from the data analytics side, based on the
assumption of the existence of this redundancy.

Therefore, the goal of the VEBAG module is the creation of
high level entities that preserve as much information as possible
in the data set but yet, reducing the volume of it. In this case,

we want to create virtual areas comprising several building space
areas, finding patterns in the energy-related use and defining these
virtual areas according to such information to optimize the content
of information.

To do so, we aggregate each attribute per energy device daily.
This aggregation can be easily donewith the built-in RESTful aggre-
gation functions provided by COMET within the homogenization
and storage layer. Thatway, we can represent each device as a time
series having one attributemeasurement per day andwith this, it is
possible to find a clustering algorithm that groups every attribute
of the time series finding some distinctions between them, like
DBSCAN or longitudinal k-means.

Once every device is assigned to a cluster or virtual area, the
generator computes themean of the elements of each cluster to get
an average measurement. Finally, each generated cluster is stored
in the storage layer as an instance of the virtual energy area entity
(see Fig. 3(b)). In that sense, this generator is launched on a regular
basis orwhen certain data shifts are detected in the data by the data
volatility monitor (described in the next section). Fig. 5 depicts an
illustrative example of this process given the building’s floor.

Firstly, Fig. 5(a) shows the distribution of room-based building
space areas along with their HVACs. It should be recalled that each
of these areas and sensors will be stored as different instances in
IoTEP. Furthermore, the figure also shows an example of a possible
time-series plot of the regulated temperature for each HVAC for
illustration purposes.

Next, Fig. 5(b) shows the virtual energy areas generated on the
basis of the aforementioned temperature time series. As we can
see, the six initial room-based building space areas have been
merged into three instances of virtual energy areas by grouping
together the HVACs with similar time series. This way, rooms 4,
5 and 6 and their associated HVACs have beenmerged into a single
area (virtual energy area 3 in the figure).

All in all, the generation of these virtual energy areas enables
the platform to provide multiple views of the energy status of a
building. In a low-level setting, we canmonitor energy parameters
from a single-sensor point of view. Over such simple view, we
can also extract energy parameters related to a particular building
spatial area (e.g., room, corridor and the like) by simple aggregation



F. Terroso-Saenz et al. / Future Generation Computer Systems 92 (2019) 1066–1079 1073

(a) HVACs and room-based building space areas.

(b) Virtual Energy Areas generated based on the HVACs’ temperature time-series.

Fig. 5. Example of generation of virtual energy areas considering the HVAC temperature in a building floor.

using the building spatial area instances. Finally, virtual energy area
instances enrich the energy awareness by providing an extra layer
of perception that is not constrained by the building architectural
structure. This way, it is possible to monitor building areas with
similar energy behaviors simultaneously.

Data volatility monitor. In order to come up with real energy-
aware services, the monitoring of certain energy parameters of
a building becomes paramount. This includes detecting either
abnormal energy consumption related to building spaces or an
abnormal temperature setting related to HVACs.
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For that goal, the data volatility monitor focuses on comput-
ing the current rate of change of each energy sensor parameter
included in the storage layer. This is done in three steps.

Firstly, we extract the historic data set of the target energy pa-
rameter for a particular sensor with respect to a pre-defined time
period tvolint from COMET. Then, the average rate of change among
pairs of consecutive observations of the attribute is computed.
Finally, if such averaged value is substantially different that the
historic rate of change of that attribute then an alarm is triggered.
For the sake of clarity, the pseudo-code of this process is shown in
Algorithm 1.

Algorithm 1: Data volatility calculation.
Input: Type, identifier and energy parameter of the monitored sensor

(sensortype, sensorid, sensorattr ), time interval under study (tvolint )
and historic rate of change of the considered parameter for the
target sensor (rhsensorattr ).

Output: Data volatility alarm, if any.
/* Historic data extraction */

1 D← get_COMET_raw_historic_data(sensortype, sensorid, sensorattr , tvolint )
/* Average data-rate change calculation */

2 dprev ← 0 ravg ← 0 n← 0
3 for each d ∈ D do
4 r ← |d− dprev |
5 ravg ← ravg +

d−ravg
n

6 dprev ← d n← n+ 1

/* Meaningful data-rate change detection */
7 if ravg >> rhsensorattr then
8 return data_volatility_alarm(sensortype, sensorid, sensorattr , ravg )

This alarm is received by the final energy services on top of
the platform and the VEBAG module. If this module receives a
set of consecutive alarms related to the same energy parameter
in a short period of time then it might indicate that the energy
similarities in between building areas have changed. In order to
capture such shift, VEBAG re-launches the clustering process to
reconfigure the virtual areas related to such energy factor. In that
sense, this monitor is endlessly executed every tvolint time units in
order to keep a continuous control over the sensor data streams.

Finally, we would like to notice that this last mechanism along
with the CEP data cleaning described in Section 3.2.2might provide
some clues to building operators about data inconsistencies due to
sensor interferences. In particular, the data cleaning module can
remove readings that are not consistent with the normal operation
of a sensor whereas the data volatility mechanism can also detect
abnormal disturbances in the data rate change of a sensor reporting
that something unusual is happening.

3.2.4. Service layer
Although not that central when considering the architecture of

the platform here developed, the Service Layer is the last level of
the IoTEP. This layer serves as interface between the IoTEP and the
user, that could be anything from a building services manager to
the back end of a smartphone application.

At this level, the data analytics procedures can be invoked and
their results visualized. Also, smart-building services that may be
the norm when the smart-building paradigm is fully established
will be nested at this level of the IoTEP platform, and will allow
features such as advanced HVAC predictive control, home automa-
tion, fuel poverty evaluation, sick building syndrome diagnostics,
risk situations for vulnerable people (as in heat waves), smart tariff
strategies, and many others.

4. Validation of the platform

In order to test the feasibility of the proposed platform, IoTEP
has been instantiated in a real pilot that allowed us to evaluate
functionalities of the new platform. Here we provide some details
of the evaluation scenario.

4.1. Pilot description

IoTEP was instantiated at the University of Murcia, Spain. Dur-
ing the last three years, this university has carried out an ambi-
tious plan to monitor and control its buildings’ infrastructures dis-
tributed across the university premisses. The number of buildings
monitored and the automated services have increased quickly in
the last years, what serveswell the purpose of testing the plasticity
of the platform presented in this paper. It should be noted that the
sensorization of the buildings at the University ofMurcia was done
independently of this project, so the fact that the platformwas able
to allocate the data coming from all the sensorswas already a proof
of its validity.

In this context, IoTEP was used as the main enabler of an
energy efficiency campaign at three cases, namely the Faculty of
Chemistry and two multi-disciplinary research and technological
transfer centerswithin the university. Details of the three buildings
are provided in Table 1.

Lastly, the evaluation of IoTEP covered a three-month winter
campaign from 01/10/2016 to 28/02/2017.

Platform configuration. IoTEP was installed in a centralized server
with CentOS 6.7 as operating system, 8 GB RAM and 250 GB hard
disk. Besides, Table 2 sums up the configuration of the inner pa-
rameters of the platform. It should be reminded that tcleanint defines
the time interval used by the CEP cleaning mechanism to compose
the quartile fences (Section 3.2.2) whereas tvolint indicates the length
of the time series considered by the data volatility mechanism to
infer meaningful data shifts (see Algorithm 1).

Before the deployment of IoTEP in the pilot, a full covering of
energy related variables was done in the buildings under study. Af-
ter preliminary evaluations, it was discovered that there are three
families of data that are fundamental to understand the energy
behavior of the building users and heat losses of the envelopes.
The three families are: building characteristics, energy streams and
building state.

The building characteristics are the physical description of the
building. Detailed blueprints of the building were obtained from
the department of estates of the university together with detailed
plans of constructions. This information together with visual in-
spections carried out by the members of our team have allowed
as to have a rather full description of the condition of the building
thermal envelope. With this, it was possible to use building phys-
ical models to analyze and predict the heat flows of the building
and therefore the energy performance of the fabrics.

About the second family, we were able to monitor in real time
with a sampling period of 10 min the operation of more than
200 conditioning units in real time. This included the status of
the machines (on/off) and the set point temperatures. It was also
possible to obtain the technical characteristics of the machines,
what together with the rest of the data allowed us to have a rather
accurate proxy of specific power consumption in real time. To
contextualize this individual power consumption, the total power
consumption of the building was also measured.

Finally, it was needed to know what the conditions on the
interior of the spaces of the building were. For this, we monitored
in real time the temperature ofmore than 200 spaces. This temper-
atures are in accordancewith the data taken from the conditioning
systems what allowed us to create virtual control volumes/zones
in which to evaluate energy flows.
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Table 1
Use case building characterization.

Faculty of chemistry (FC) Technological transfer center (TTC) Research center (RC)

Location (coords) 38.02,−1.16 37.72,−1.09 38.02,−1.17
Orientation south-west south-west south-west
Surface area 1500 m2 3323 m2 1000 m2

Floors 6 4 2

Table 2
IoTEP parameters setting.

Parameter Description Value

tcleanint Time window length for sensor stream fence calculation 30 days
tvolint Time period for data volatility calculation 2 hours

Table 3
Information model entities distribution per building.

Entity Number of instances

FC TTC RC

Spatial region 1 1 1
Building 1 1 1
Building space area 344 16 10
HVAC 239 0 4
Clean HVAC 239 0 4
Power meter 1 13 4
Clean power meter 1 13 4
Weather conditions 1 1 1

The IoTEP was created in such manner that it allows to allocate
all this information in two ways: in the form of data stream, and in
the form of ‘‘static’’ information. In this way, the description of the
building is allocated on the building entity previously described.
The characteristics of the conditioning system and the data stream
can be placed on theHVAC and powermeter entities created for this
purpose.

This comprehensive set-up fully monitors the most important
energy related aspects of the building, what could be a two-bladed
sword. In principle, this allows to do high level reasoning on the
data with the high added value that this represents; however,
such a large flow of data may render the infrastructure slow and
inefficient with such a heterogeneous data. With the solution
proposed in this paper we overcome the problems, leading to a
platform that, because of the efficient handling of data inherited
from FIWARE, allows for the true real time comprehensive data
analysis of buildings. With the advantages that this represents.

As a result of this study, Table 3 shows the distribution of
instances of the entities of the IoTEP information model stored in
ORION per building.

4.2. Pilot objectives

The goal for this testing campaign was to develop a new ser-
vice able to predict the next-day energy consumption of each of
the three buildings, and with this to evaluate the framework we
present at all the different levels. However, it should be reminded
that this is only an example of the variety of features that could be
implemented on IoTEP. The service tested would be instrumental
for the department of estates of the university in order to plan
energy-saving actions and advanced versions of model predictive
control.

As Fig. 6 shows, this service was developed on top of IoTEP
i.e. on the service layer shown in Section 3.2.4, by using its func-
tionalities. It was implemented as a web application allowing the
control of some of the IoTEP features by the buildings manager to
carry on decisions according to data analysis results. Consequently,
this application acts as a dashboard that allows users to control

Fig. 6. Representation of the IoTEP pilot evaluation.

the platform and access the aforementioned energy consumption
service (see Fig. 7).

In terms of access of the inner features of IoTEP the application
includes the following actions,

• Firstly, it is possible to visualize the most recent readings
of the HVAC devices per each room of the building. For this
feature, the application makes use of the ORION component
of the platform.
• Secondly, it is also possible to visualize the HVAC data given

a time range defined by the user. For this purpose, the appli-
cation leverages the raw historic data extraction method of
COMET.
• Moreover, this dashboard also allows to control and visual-

ize the results of the virtual energy areas generation of the
platform (VEBAG module). In that sense, the user can also
select the clusteringmethod, and the number of clusterswill
be selected automatically by the Calinski–Harabasz index.

Finally, the energy consumption prediction service was also
integrated in this application. On this way, buildingmanagers have
full control over all the data analytic process starting from data
visualization, aggregation and clustering to the final energy predic-
tion procedure. This integration allows to perform such prediction
for several granularity levels targeting from single devices, space
areas or virtual energy areas. This multi-faced prediction is a key
innovation aspect of the application.

For the evaluation of the platform, we studied the suitability
and feasibility of the multi-layered view of the energy-related
information proposed by IoTEP by means of the virtual energy
areas generation. Additionally, we also studied the accuracy of the
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Fig. 7. IoTEP dashboard and energy consumption prediction service.

Fig. 8. Time series of 5 HVAC devices.

energy prediction service when such areas are included as the
target entities.

For the generation of these areas, the daily aggregation of data
made by the VABAGmodule was based on counting the hours that
each device is tuned on during the day (24 h). As an example,
the number of hours that five devices were on during five days is
shown in Fig. 8

For the clustering of such aggregated data, we relied on the k-
means algorithm [43], but as mentioned before, more algorithms
can be used for this purpose. We arbitrarily selected 3 clusters, but
a different number can be selected if needed. In Fig. 9 we show the
three evolutions of the groups of HVAC within FC that this algo-
rithm identified for working days during the period of study. That
way,we found rooms in this buildingwith high use pattern (cluster
3, comprising 47 devices), roomswith little use (cluster 1 with 118
HVACs) and rooms presenting an intermediate frequency of use
of the HVAC system (cluster 2 with 74 HVACs). The separation of
these clusters could be the first step to an intervention strategy to
modify the behavior of big consumers.

In the same way, and looking at the infrastructure level, we
represent 239 values taken from the HVAC devices into 3 variables
providing a 98.7% reduction of data.

Regarding the energy-prediction service, it makes its prediction
according to the previous HVAC grouping within FC. Hence, we
compare its performance with the use of the raw data set and in

Fig. 9. Cluster evolutions.

combination with environmental variables. Being the inputs and
outputs of the model identified, we followed the next steps [44]:
Being the inputs and outputs of the model identified, we followed
the next steps [44]:

1. Standardization of inputs
2. Splitting the data into training (75%) and test set (25%)
3. Validation: 10-fold cross validation and 5 repetitions over

the training data set using several models: random forest,
artificial neural networks and support vector regression.

4. Evaluation: Using the RMSE metric to evaluate the models
and its coefficient of variation for comparison.

The scenarios to compare are based on the different inputs to
consider:

• ‘‘Hours on’’ average per cluster of the previous day
• Weather predictions fromWeather Underground API.8
• Raw HVAC data (every HVAC device daily usage)
• Both average per cluster and weather predictions

Aswe can see in Table 4, with a really reduced number of inputs
(only 3 variables), for every model we obtain very good results
compared to the others. That way, the use of clusters for creating

8 https://www.wunderground.com/.

https://www.wunderground.com/
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Table 4
RMSE (and CV-RMSE) of the different models and inputs.

Model HVAC clusters Weather Raw HVAC Clust + Weath

RF 0.32 (10.53) 0.513 (17.74) 0.358 (11.83) 0.356 (11.76)
SVM 0.316 (11.03) 0.635 (22) 0.446 (14.76) 0.461 (15.23)
BRNN 0.281 (9.48) 0.423 (14.63) 0.347 (11.47) 0.398 (13.15)
# Inputs 3 23 239 26

higher level entities is proved to be useful. Although this is a rather
arbitrary method, we prove with this that the platform serves to
host algorithms for data analysis and prediction on a very versatile
way

Comparative results. In the work [22], CV-RMSE is used in order to
validate their results. They are evaluating both aggregated (total)
anddisaggregated (cooling and ventilating) energy consumption in
a daily, weekly and monthly basis. When we compare our results
with theirs, we are obtaining 6% less of variance for the RMSE,
which is very satisfactory.

In addition, the Recommended Values for Baseline Model from
ASHRAE Guideline 14 [45] account for the CV-RMSE smaller than
30% for daily predictions which we reach with ease (our best
performance returns a 9.48 %, see Table 4).

To sum up, with this small example we show what can be
implemented on the service layer of the IoTEP.With this, we intend
to prove how rather complex methods can be implemented on
a simple way in our platform. Also, we have shown an example
of reducing data volume taking advantage of data redundancy
reduction doing clustering. For this specific examplewehave taken
three clusters as an arbitrary number andwe have shown that total
energy can be predictedwith them. Thiswas done as it evaluates all
the features of the platform that we show in this paper, but many
other applications and examples can be developed following the
principles shown in Section 2.

4.3. Lessons learnt

From this first deployment of IoTEP, we can draw up some
remarks.

Firstly, the results of the preliminary sensorization study of
pilot were easily integrated in the IoTEP information model. This
allowed to homogenized all such results in a common format and
showed the versatility of the model.

Secondly, the integration of data mining support procedures
as part of the platform made possible the easy development of a
final service for energy data mining. In that sense, developers only
needed to focus on the actual functionality of the service related
to the prediction algorithms since other important tasks of the
data analysis like data pre-processing or clustering were already
provided by the platform.

Finally, the idea of providing amulti-layered view of the energy
status of a building by means of clustering techniques has proved
its suitability in the energy prediction service in two aspects. From
a data-mining point of view, it reduces the redundancy of data
and, thus, making up lightweight models. From a more functional
point of view, the level of abstraction that the virtual energy areas
providemight help buildingmanagers to better understand certain
energy behaviors within the building.

All in all, this pilot has helped us to confirm that the integration
of data analytics support features as part of the IoT platform is
currently a key requirement in the energy domain. This enables
the development of more sophisticated energy-aware services in a
fast-pace process what seem to be the next natural step towards a
more efficient energy-literate society.

5. Conclusions

Due to the importance of the building sector in the end-use
energy consumption, it becomes a foremost task to achieve mean-
ingful energy savings that will reduce this energy use in reality.

Despite the fact that IoT technologies have been widely used
for the realization of the smart building concept, the simple sen-
sorization of buildings is not enough to make a housing stock that
consumes fewer energy resources a reality. IoT is also required
to properly process, manage and, above all, analyze the energy-
related data that would help to develop final energy-aware ser-
vices targeting the energy efficiency goal.

In this context, several multi-purpose IoT platforms already
provide generic solutions to manage IoT data. However, there is a
lack of platforms in this field focusing on (1) the household energy
domain and (2) providing support for data analytics. As a result,
the present work shows an IoT Energy Platform (IoTEP) that covers
the two aforementioned needs by following an open approach
based on FIWARE enablers. IoTEP provides several functionalities
oriented to the data analytics domain like the CEP data cleaning
module or the times series storage along with functionalities for
the correct energy management like the data volatility monitoring
or the virtual energy areas detector that will allow with personal-
ized energy feedback for the improvement of energy behavior.

Lastly, the platform has been instantiated in a real use case
having a large energy sensor network. In that sense, one of the key
novelties of IoTEP is that the virtual areas detection has proved
to be of great help when it comes to develop an end-use energy
prediction service over the platform, but many other services
could be implemented with trivial computational effort under this
paradigm.

Regarding further work, IoTEP has been developed re-using
several open source components that are orchestrated following
lightweight RESTfull calls what allows other scientists and engi-
neers to contribute to this platform, opening the door to crowd
sourced development. Consequently, new modules and enablers
can be smoothly integrated in the existing architecture. In that
sense, the integration of other types of sensing approaches beyond
mote-class sensors, like crowdsensing, it foreseen as future actions
in the platform. This would allow to capture and analyze other
forms of human behavior also relevant for the building energy
domain.
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