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a b s t r a c t 

The massive collection of data via emerging technologies like the Internet of Things (IoT) requires finding 

optimal ways to reduce the created features that have a potential impact on the information that can be 

extracted through the machine learning process. The mining of knowledge related to a concept is done 

on the basis of the features of data. The process of finding the best combination of features is called 

feature selection. In this paper we deal with multivariate time-dependent series of data points for energy 

forecasting in smart buildings. We propose a methodology to transform the time-dependent database 

into a structure that standard machine learning algorithms can process, and then, apply different types 

of feature selection methods for regression tasks. We used Weka for the tasks of database transformation, 

feature selection, regression, statistical test and forecasting. The proposed methodology improves MAE 

by 59.97% and RMSE by 40.75%, evaluated on training data, and it improves MAE by 42.28% and RMSE 

by 36.62%, evaluated on test data, on average for 1-step-ahead, 2-step-ahead and 3-step-ahead when 

compared to not applying any feature selection methodology. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Energy efficiency is the goal to optimise the amount of energy

equired to provide products and services. Energy consumption is

ncreasing with the growing population and intensified in highly

opulated parts of cities [1] . Energy efficiency is in the interest of

veryone, from individuals to governments, since it yields econom-

cal savings, reduces greenhouse gas emissions and alleviates en-

rgy poverty [2] . In order to achieve energy efficiency, smart grids,

pen data platforms and networked transport systems are prolif-

rating for managing and monitoring resources automatically. This

rovides the emergence of smart cities, which thanks to the collec-

ion of data using sensors that are interconnected through the in-

ernet ( Internet of Things ) allow the extraction of insights that are

ecessary in order to provide better services to the citizens that

lso include energy efficiency. 

The huge amounts of data that are collected via the IoT are con-

equently analysed in order to extract the knowledge necessary for

chieving energy efficiency. For example, the main source of data

n smart grids is the Advanced Metering Infrastructure (AMI) which

eploys a large number of smart meters at the end-user side. The

mounts of AMI data grow very quickly. If data is collected ev-
∗ Corresponding author. 
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ry 15 mins by 1 million metering devices, the total records reach

5.04 billion and the volume of meter reading data surge up to

920 Tb [3,4] . An actual example of this is the Electricity Load Di-

grams dataset from the UCI Machine Learning Repository [5] that

ontains 140,256 attributes. 

However, in order to realise such analysis it is desirable to re-

uce the dimensionality of the data for easing the models perfor-

ance. In order to do so there exist several approaches such as

egmentation and representation of attributes [6] or feature selec-

ion [7] . We are going to focus on feature selection since it has

hown its effectiveness in many applications by building simpler

nd more comprehensive models, improving learning performance,

nd preparing clean, understandable data [8] . 

In this work, we use time series data from the Chemistry Fac-

lty of the University of Murcia to generate energy consumption

orecasts [9,10] . Time series forecasting differs from typical machine

earning applications where each data point is an independent ex-

mple of the concept to be learned, and the ordering of data points

ithin a dataset does not matter. For this reason, standard ma-

hine learning methods should not be used directly to analyze time

eries data. In this paper, we propose a methodology to, firstly,

ransform the time series into a form that standard machine learn-

ng algorithms can process, and then, systematically apply a set

f feature selection methods for regression that includes univari-

te, multivariate, filter and wrapper methods [11] . Time series data

s transformed by removing the temporal ordering of individual

https://doi.org/10.1016/j.enbuild.2019.05.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.05.021&domain=pdf
mailto:aurora.gonzalez2@um.es
https://doi.org/10.1016/j.enbuild.2019.05.021
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Fig. 1. General schemes for multivariate and univariate feature selection. 
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a  
input examples and adding a set of delays to the input which

are called lagged attributes and provide the temporal information.

The methodology also allows dealing with intervention attributes ,

which are to be considered external to the data transformation

and closed-loop forecasting processes. This approach to time se-

ries forecasting is more powerful and more flexible than classical

statistics techniques such as ARMA and ARIMA [12] . Feature se-

lection methods are applied for the selection of both lagged and

intervention attributes. Random Forest, instance-based learning and

linear regression algorithms are used for regression with the dif-

ferent reduced databases. Finally, the best reduced database to-

gether with the best regression algorithm are used for the pre-

dictions 1-step-ahead, 2-step-ahead and 3-step-ahead evaluated in

training data and test data, and the results are compared with the

predictions obtained with the original database. The experiments

have been carried out using the Waikato Environment for Knowl-

edge Analysis ( Weka ) [13] . 

With this background, the paper has been organized as follows:

Section 2 describes the background of the paper; Section 3 pro-

poses a methodology for the energy efficiency analysis in smart

buildings based on feature selection; Section 4 analyzes and dis-

cusses the results; Section 5 introduces some other methods used

for the same purpose in the literature, and finally Section 6 depicts

the main conclusions and future work. 

2. Background 

This section defines the concept of feature selection and their

categorization, shows some important related works in literature,
mphasizes the contributions of the paper, and describes the

ataset used for experiments. 

.1. Feature selection 

Feature Selection (FS) is defined in [7] as the process of eliminat-

ng features from the database that are irrelevant to the task to be

erformed. FS facilitates data understanding, reduces the measure-

ent and storage requirements, the computational process time,

nd the size of a dataset, so that model learning becomes an eas-

er process. An FS method is basically a search strategy where the

erformance of candidate subsets is measured with a given evalu-

tor . The search space for candidate subsets has cardinality O (2 w ),

here w is the number of features. A stopping criterion establishes

hen the FS process must finish. It can be defined as a control

rocedure that ensures that no further addition or deletion of fea-

ures produces a better subset, or it can be as simple as a counter

f iterations. FS methods are typically categorized into wrapper,

lter and embedded, univariate and multivariate methods. Wrapper

ethods [14] use a predetermined learning algorithm to determine

he quality of selected features according to an evaluation met-

ic [15] . Filter methods apply statistical measures to evaluate the

et of attributes [16–18] . Embedded methods achieve model fitting

nd FS simultaneously [19] . Multivariate methods evaluate features

n batches. Univariate methods evaluate each feature independently.

ig. 1 shows general schemes for multivariate and univariate FS. 

.2. Related work 

We have carried out an extensive search in order to find other

cademic works that have solved a similar problem than ours. To-
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1 http://entropy-project.eu . 
ether with the works that address FS for energy consumption

ime series, we have also considered important to review FS for

nergy consumption when not treated as time series, and FS for

ime series problems in general, i.e. other approaches not specifi-

ally related to energy consumption. 

The first paper that studied how the selection of subsets of fea-

ures associated with building energy behaviours influences a ma-

hine learning model performance for energy consumption predic-

ion used some filter methods for FS and support vector regression

or forecasting [20] . A bit later, in the thesis [21] , Fast Correlation-

ased Filter ( FCBF ) is used for FS in load prediction error problems

n four building areas. A meteorological dataset from several lo-

ations and also, the geographical factor are exploited by select-

ng variables from different locations. The baseline comparisons are

one with e-SVR . According to this work, how the relationships be-

ween features change with distance motivates a greedy FS method

or the electrical load forecasting. In the works [22,23] , correlation

nd principal components analysis ( PCA ) are used for FS and trans-

ormation. 

Feature selection for time series prediction has been carried out

sing neural networks [24] . By combining contemporaneous and

agged realisations of the independent variables and lagged depen-

ent variables more general models of dynamic regression, autore-

ressive ( AR ) transfer functions and intervention models are con-

tructed. It has also been done using the Granger causality discov-

ry [25] to identify important features with effective sliding win-

ow sizes, considering the influence of lagged observations of fea-

ures on the target time series. 

Other studies have searched for the optimal time-windows and

ime lags for each variable based on feature pre-processing and

parse learning in order to configure the input dataset [26] . 

In other works, the forecasting of solar radiation time series in

nhanced by using a train set of bootstrapped Support Vector Ma-

hines in order to perform FS [27] . They assure that this method

s more robust than a regular FS approach because using the later,

mall changes on the train set may produce a huge difference on

he selected attributes. Other studies related to solar radiation pre-

iction mask the inputs as a FS step [28] . They create their own

eatures by defining night, sunrise, day and sunset according to

he moment that their instruments perceive those. This provides

ertain improvements on forecast accuracy. A data-driven multi-

odel wind prediction methodology using a two-layer ensemble

achine learning technique is developed in [29] . A deep FS frame-

ork is employed where four different approaches are used in or-

er to get the input vector: PCA, Granger Causality Test, Autocorrela-

ion and Partial Autocorrelation Analysis , and Recursive Feature Elim-

nation . Another ensembles way of selecting features in presented

n [30] and it is used for predicting the amount of incoming calls

or an emergency call center in a time series manner. They use

ve algorithms ( ReliefF, PCA, Freq. Discretization, Information Gain

nd K-means ) that are different in nature and combine the rank-

ngs computed grouping similar approaches and computing new

eights as the mean of the individual weights. After that, all vari-

bles that are ranked among the top five positions in at least three

f the groups compound the selected features. In the thesis work

31] they present three case studies in which FS is a step in the

odel creation. They used the following methods: sequential for-

ard/ backward selection ( SFS, SBS ), sequential forward/ backward

oating selection ( SFFS, SBFS ), the n best features selection ( nBest )

nd the best individual features . 

The main data characteristics of energy time series have been

pecifically analysed in [32] . To explore such data from different

erspectives they consider two main categories: nature (nonsta-

ionarity, nonlinearity and complexity characteristics) and pattern

cyclicity, mutability or saltation, and randomicity or noise pat-

ern). After that, FS for electricity load forecasting was done in a
ime series manner using correlation and instance based meth-

ds [33] . In [34] it is presented a survey on data mining tech-

iques for time series forecasting of electricity. The survey focuses

n the characteristics of the models and their configuration. Wrap-

er methods, Artificial Neural Networks, mutual information, autocor-

elation and ranking based methods are mentioned as FS techniques

sed in the prediction of energy consumption. Finally, the work

2] uses temperature time series together with day of the week in

rder to estimate energy consumption. 

.3. Contributions of the work 

Regarding the papers that also focus on feature selection for

ime series prediction [24,25] , we highlight the aspects that make

ur work outstand the previous. The focus of Crone and Kourentzes

24] is narrowed to neural networks which it is not the best for ev-

ry situation since usually, neural networks are more computation-

lly expensive and require much more data than traditional algo-

ithms. Also, the No Free Lunch theorem [35] suggests that there

an be no single method which perform bests on all datasets.

25] is focused on the Granger causality as feature selection so

one of them provide a systematic comparison between the pos-

ibilities available in the feature selection field. We have carried

ut such comparisons by combining univariate, multivariate, filter

nd wrapper methods and also we have checked the performance

f the several databases obtained in a plethora of prediction algo-

ithms. 

Additionally, we have followed a multi-objective evolutionary

earch strategy which is more advance that the other procedures

llowing to minimise Root-Mean-Square Error ( RMSE ) and Mean Ab-

olute Error ( MAE ) and also the number of variables. In addition, in

his work we use a multi-objective evolutionary search strategy,

hich simultaneously minimizes the error - Root-Mean-Square Er-

or ( RMSE ) or Mean Absolute Error ( MAE ) - and minimizes the num-

er of attributes, unlike the single-objective search strategies that

nly minimize the error. Evolutionary techniques are metaheuris-

ics for global search, unlike other deterministic search strategies

hat tend to fall in local optima. We have measured the feature se-

ection effectivity using both metrics RMSE and MAE . We have ob-

ained that minimizing MAE provides better results in the posterior

rediction phase. In the feature selection process, the methodology

lso allows dealing with intervention attributes, which are to be

onsidered external to the data transformation. 

Finally, to the best of our knowledge this is the first time that a

ultivariate time series feature selection methodology in proposed

or predicting energy consumption in smart buildings. 

.4. Energy efficiency dataset 

The reference building in which the energy consumption fore-

asting has been carried out is the Chemistry Faculty of the Uni-

ersity of Murcia, which is a building used as a pilot for the H2020

NTROPY project (Grant Agreement No 64 984 9). 1 

The dataset is composed of 5088 observations of 50 attributes

hat are measured hourly from 2016-02-02 0 0:0 0:0 0 until 2016-

9-06 23:0 0:0 0, where time-stamps from 2016-02-05 0 0:0 0:0 0

ntil 2016-05-07 23:0 0:0 0 are missing data. Table 1 shows the

umber, name and sources of the dataset attributes. The output

ttribute is the energy consumption measured in KWh. Attributes

atetime (“yyyy-MM-dd HH:mm:ss”), season (1–4), day of the week

1–7), and holiday (0,1) have been extracted from the date’s ob-

ervation. We have used meteorological data gathered from sev-

ral sources and stations with the purpose to select the attributes

http://entropy-project.eu


74 A. González-Vidal, F. Jiménez and A.F. Gómez-Skarmeta / Energy & Buildings 196 (2019) 71–82 

Table 1 

Attributes and data sources of the energy consumption dataset used in this paper. 

Number Name Data source 

1–8 realWU_temp, realWU_feels, realWU_dewp, realWU_hum, Weather Underground 

realWU_wspd, realWU_visib_km, realWU_mslp, realWU_prep_1h 

9–17 pr_temp, pr_feels, pr_dewp, pr_hum, pr_pop, pr_wspd, Weather Underground 

pr_wdir_deg, pr_sky, pr_mslp 

18–33 stMO12_IMI_tmed, stMO12_IMI_tmax, stMO12_IMI_tmin, stMO12_IMI_hrmed, IMIDA MO12 

stMO12_IMI_hrmax, stMO12_IMI_hrmin, stMO12_IMI_radmed, stMO12_IMI_radmax, 

stMO12_IMI_vvmed, stMO12_IMI_vvmax, stMO12_IMI_dvmed, stMO12_IMI_prec, 

stMO12_IMI_dewpt, stMO12_IMI_dpv, stMU62_IMI_tmed, stMU62_IMI_tmax, 

34–45 stMU62_IMI_tmin, stMU62_IMI_hrmed, stMU62_IMI_hrmax, stMU62_IMI_hrmin, IMIDA MU62 

stMU62_IMI_radmed, stMU62_IMI_radmax, stMU62_IMI_vvmed, stMU62_IMI_vvmax, 

stMU62_IMI_dvmed, stMU62_IMI_prec, stMU62_IMI_dewpt, stMU62_IMI_dpv 

46 energy Output attribute 

47–50 season, day_of_the_week, holiday, datetime Date’s observations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Methodology for feature selection for energy time series forecasting. 

 

 

 

 

from the most explanatory source according to our feature extrac-

tion analysis. 

Weather Underground 

2 is a web service that through its API

provides the following real values: temperature ( ◦C), apparent tem-

perature ( ◦C), dew point ( ◦C), humidity (%), wind speed (m/s), mean

sea level pressure (mbar), visibility (km) and precipitations in last

hour (mm). We also use one-hour predictions for the first six pre-

vious attributes, together with probability of precipitations (%), sky

cover (%) and wind direction (degrees). 

IMIDA 

3 (The Research Institute of Agriculture and Food Devel-

opment of Murcia) provides real time records of weather. We have

selected two weather stations regarding proximity to the build-

ing: MO12 and MU62 and from each of them we have collected

the following variables: temperature (mean, minimum and maxi-

mum) ( ◦C), humidity (mean, minimum and maximum) (%), radia-

tion (mean and maximum) ( w / m 

2 ), wind speed (mean and maxi-

mum) ( m / s 2 ), wind direction (mean) (degrees), precipitation (mm),

dew point ( ◦C) and vapour pressure deficit (kPa). 

3. A methodology for energy multivariate time series 

forecasting based on feature selection 

We have followed the methodology shown in the Fig. 2 to per-

form the energy time series forecasting. The following six steps

have been systematically applied: database transformation, feature

selection, regression, statistical tests, decision making and forecast-

ing. Next, each step is described separately, and some of the names

of the Weka classes and methods that are required throughout the

process are indicated. 

3.1. Database transformation 

The first step of our methodology is to transform the database

by creating lagged versions of variables for use in the time series

problem. For this, the following steps are carried out: 

1. Set an artificial time-stamp with start value 1. We use an arti-

ficial time index for convenience. In this way, no instances are

inserted in the training data for the missing time-stamps. 

2. Set the attributes to lag . The system can jointly model mul-

tiple attributes to lag simultaneously in order to capture de-

pendencies between them. Because of this, modelling several

series simultaneously can give different results for each series

than modelling them individually. The rest of the attributes

( non lagged attributes) are considered as intervention attributes

(also called overlay data ). We set attributes 1 to 46 as lagged

attributes. Attributes 47, 4 8 and 4 9 are intervention attributes. 
2 https://www.wunderground.com/ . 
3 http://www.imida.es/ . 

 

 

 

 

3. Set the minimum previous time step to create a lagged field.

We set to 0 the minimum lag length to create. A value of 0

means that a lagged variable will be created that holds target

values at time 0. 

4. Set the maximum previous time step to create a lagged vari-

able. We set to 3 the maximum lag length to create. A value of

3 means that a lagged variable will be created that holds tar-

get values at time −3 . All time periods between the minimum

and maximum lag will be turned into lagged variables. In this

https://www.wunderground.com/
http://www.imida.es/
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Table 2 

Proposed feature selection methods for energy time series forecasting. 

Database #Id. Type of FS method Name Search strategy Evaluator 

#1 Wrapper Multivariate MOES-RF-MAE MultiObjectiveEvolutionarySearch RandonForest (MAE) 

#2 Wrapper Multivariate MOES-RF-RMSE MultiObjectiveEvolutionarySearch RandonForest (RMSE) 

#3 Wrapper Multivariate MOES-IBk-RMSE MultiObjectiveEvolutionarySearch IBk (RMSE) 

#4 Wrapper Multivariate MOES-LR-MAE MultiObjectiveEvolutionarySearch LinearRegression (MAE) 

#5 Wrapper Univariate RANKER-RF-RMSE Ranker RandonForest (RMSE) 

#6 Filter Multivariate GS-CFSSE GreedyStepwise CfsSubsetEval 

#7 Filter Univariate RANKER-RFAE Ranker ReliefFAttributeEval 

#8 Filter Univariate RANKER-PCA Ranker PrincipalComponents 

Fig. 3. Organization chart of the proposed feature selection methods for energy time series forecasting. 
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way, for example the variable energy will be transformed into

4 lagged variables Lag_energy+0 (equivalent to the variable en-

ergy ), Lag_energy-1, Lag_energy-2 and Lag_energy-3 . 

5. Perform database transformation. A database of 189 attributes

has been generated with the transformation. 

6. Save transformed database with the name Transformed-

DatabaseAux . This auxiliary transformed database will be used

later in the forecasting phase. 

7. Remove datetime attribute. When using an artificial time index,

the attribute ArtificialTimeIndex is added to the database, so the

attribute datetime must be removed. 

8. Save the final transformed database with the name Trans-

formedDatabase . The final number of attributes of the trans-

formed database is 188. 

We use the class weka.classifiers.timeseries.core.TSLagMaker for

his task. Data transformation can be done from the plugin tab

n Weka’s graphical “Explorer” user interface, or and using the API

hrough a Java program. 

.2. Feature selection 

Once the task of transforming the database is done, the next

tep is to apply FS on the TransformedDatabase2 database. In

eka , FS is implemented with the class weka.attributeSelection.

ttributeSelection through two components: the search strategy

 weka.attributeSelection.ASSearch abstract class) and the evalua-

or ( weka.attributeSelection.ASEvaluation abstract class). This al-

ows users and programmers to configure a multitude of dif-
erent methods for FS, both filter and wrapper, univariate and

ultivariate. Evaluators with names ending in SubsetEval con-

gure multivariate methods, whereas those with names end-

ng in AttributeEval configure univariate methods. For multi-

ariate wrapper FS methods, the weka.attributeSelection package

as the class weka.attributeSelection.WrapperSubsetEval which eval-

ates attribute sets by using a learning scheme with cross-

alidation and a performance measure. For univariate wrapper

S methods, the weka.attributeSelection.ClassifierAttributeEval class 

valuates the worth of an attribute by using a user-specified

lassifier, cross-validation and a performance evaluation mea-

ure to use for selecting attributes. Since the FS and classifi-

ation processes must be executed in batch mode, Weka offers

he class weka.classifiers.meta.AttributeSelectedClassifier which is a 

eta-classifier where dimensionality of data is reduced by at-

ribute selection before being passed on to a learning algorithm.

able 16 summarizes the packages and classes for FS in Weka used

n this paper. 

We applied eight different FS methods for regression shown

n Table 2 and graphically in Fig. 3 . In Table 2 , Database #Id de-

otes the identifier of the reduced database generated with each

S method. Each FS method is the result of a specific choice

mong the search strategy and the evaluator. We considered for

his research five wrapper FS methods and three filter FS methods.

mong them, five FS methods are multivariate and three FS meth-

ds are univariate. Table 14 shows the parameters used for each FS

ethod. Next we show the search strategies and evaluators con-

idered in this paper. 
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4 Intel (R) Core (TM) i5-4460 @ 3.20 GHz 3.20 GHz RAM 8.00 GB Operating Sys- 

tems 64 bits, processor × 64. 
3.2.1. Search strategies 

As multivariate FS methods, we use a probabilistic search

strategy and a deterministic search strategy. MultiObjectiveEvolu-

tionarySearch [36] is the probabilistic strategy, and GreedyStep-

wise [37] is the deterministic strategy. MultiObjectiveEvolutionary-

Search use multi-objective evolutionary computation where two

objectives are optimized: the first one is a performance metric or

statistical measure chosen by user with the evaluator, while the

second one is the attribute subset cardinality, and it is to be mini-

mized. The final output is given by the non-dominated solutions in

the last population having the best fitness score for the first objec-

tive. MultiObjectiveEvolutionarySearch class has two multi-objective

evolutionary algorithms implemented, ENORA and NSGA-II. ENORA

is our MOEA , on which we are intensively working over the last

decade. We have applied ENORA to constrained real-parameter op-

timization [38] , fuzzy optimization [39] , fuzzy classification [40] ,

feature selection for classification [41] and feature selection for re-

gression [42] . In this paper, we apply it to feature selection for

regression in times series forecasting. NSGA-II algorithm has been

designed by Deb et al. and has been proved to be a very power-

ful and fast algorithm in multi-objective optimization contexts of

all kinds. In [42] is statistically tested that ENORA performs better

than NSGA-II in terms of hypervolume [43,44] for regression tasks,

for which we have decided to use ENORA in this work. GreedyStep-

wise performs a greedy forward or backward search through the

space of attribute subsets, stopping when the addition (forward

direction) or deletion (backward direction) of any of the remain-

ing attributes results in a decrease in evaluation, thus, it has no

backtracking capability. 

For univariate FS methods, Ranker method [45] is required.

Ranker method ranks attributes by their individual evaluations. A

threshold, or the number of attributes to retain, allows reducing

the attribute set. 

3.2.2. Evaluators 

We considered the multivariate filter evaluator ConsistencySub-

setEval [46] . ConsistencySubsetEval scores a subset of features as

a whole, by projecting the training instances according to the

attribute subset, and considering the consistency of class values

in the obtained instance sets. As far as univariate filter evalu-

ators are concerned, RelieffAttributeEval [47] and PrincipalCompo-

nents [48] were considered. RelieffAttributeEval evaluates the worth

of an attribute by repeatedly sampling an instance and consider-

ing the value of the given attribute for the nearest instance of the

same and different class. Can operate on both discrete and con-

tinuous class data. PrincipalComponents performs a principal com-

ponents analysis and transformation of the data. Dimensionality

reduction is accomplished by choosing enough eigenvectors to ac-

count for some percentage of the variance in the original data (de-

fault 95%). Attribute noise can be filtered by transforming to the

principal components space, eliminating some of the worst eigen-

vectors, and then transforming back to the original space. 

We use the wrapper WrapperSubsetEval [14] for multivariate FS

methods and ClassifierAttributeEval [49] for univariate FS methods

in conjunction with the predictors RandomForest [50] , IBk [51] and

LinearRegression [52] , and with the metrics RMSE and MAE [53] .

RandomForest is an ensemble learning method which constructs a

forest of random trees with controlled variance, for classification

or regression purposes. IBk is a simple instance-based learner that

uses the class of the nearest k training instances for the class of

the test instances and it is also valid for regression. LinearRegres-

sion uses the Akaike criterion for model selection, and is able to

deal with weighted instances. Note that not all regression algo-

rithms can be used as evaluators in wrapper FS methods due to

their high computational time. RandomForest, IBk and LinearRegres-

sion are learning algorithms that offer a good compromise between
erformance and computational time so they are suitable as eval-

ators in wrapper FS methods. 

.3. Regression 

Once FS was made, the next step was to perform regression

ith the reduced and TransformedDatabase2 databases using dif-

erent regression algorithms. We considered RandomForest, IBk and

inearRegression since these algorithms were used as evaluators in

he wrapper FS methods. Additionally we used Support Vector Ma-

hines [54] and Gaussian Processes [55] , which are widely used for

ime series forecasting [56] , concretely the Weka implementations

MOreg and GaussianProcesses. SMOreg [57] implements the sup-

ort vector machine for regression. The parameters can be learned

sing various algorithms, being RegSMOImproved the most pop-

lar algorithm. GaussianProcesses implements Gaussian processes

or regression without hyperparameter-tuning. To make choosing

n appropriate noise level easier, this implementation applies nor-

alization/standardization to the target attribute as well as the

ther attributes. Both SMOreg and GaussianProcesses can use Polyk-

rnel, PrecomputedKernelMatrixKernel, Puk, RBFKernel or StringKernel .

able 15 shows the parameters used for the regression methods.

ables 3 and 4 show the evaluation in full training set for the RMSE

nd MAE metrics respectively. 

.4. Statistical test 

In order to detect over-fitting and prediction ability, the

egression models have also been evaluated with cross-

alidation. Tables 5–8 show the evaluation in 10-fold cross-

alidation, 3 repetitions (a total of 30 models with each regression

lgorithm in each database), for the metrics RMSE, MAE, Serial-

zed_Model_Size and User_Time_training 4 respectively. The result

f the experiment has been analysed through a paired t-test

corrected) , with 0.05 significance, being #1 the test base. For each

esult, a mark ∗ denotes that the result is statistically worse than

he test base; similarly, a mark v denotes a statistically better

esult, and no mark denotes no statistically meaningful difference. 

.5. Decision making 

Looking at Tables 5 to 8 we can make a decision for choosing

he best reduced database and, therefore, the best FS method. The

est results have been obtained with the FS method MOES-RF-MAE

database #1 ) when RandomForest is used as regression algorithm,

hich show statistically significant differences with respect to the

est of the analysed FS methods for the MAE performance metric.

or RMSE performance metric, FS method MOES-RF-MAE is also su-

erior to the rest of FS methods, with statistically significant differ-

nces except for the FS method MOES-RF-RMSE . With respect to the

erialized_Model_Size and UserCPU_Time_training performance met-

ics, the results of the FS method MOES-RF-MAE by using Random-

orest are acceptable in comparison to the rest of the methods. We

an then choose the FS method MOES-RF-MAE and the database #1

or the final forecasting process. 

Table 9 shows the selected attributes with MOES-RF-MAE .

able 9 shows the selected attributes and their ranks and impor-

ances for each of the datasets. The rank and importance of the

ttributes has been obtained through a univariate wrapper feature

election method, where the search strategy is the ranker method,

nd the evaluator is ClassifierAttributeEval with classifier = Random-

orest (with default parameters), evaluationMeasure = MAE , and
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Table 3 

RMSE with full training set. 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 5.0930 5.0286 5.2923 5.5701 5.9543 7.2083 5.3704 13.5680 7.8809 

IBk 3.0201 3.5134 2.4937 1.3826 2.7927 1.5093 1.4044 0.0 0 0 0 2.1045 

LinearRegression 19.5455 18.4759 18.7110 18.3092 18.7878 22.1723 18.2264 53.5429 17.2416 

SMOref 20.2988 19.1824 19.2648 19.0136 19.3193 23.1186 19.1566 55.5580 18.4857 

GaussianProcesses 21.9302 21.7321 24.7275 19.4525 18.9750 22.1774 18.40 0 0 54.5592 17.4686 

Table 4 

MAE with full training set. 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 2.5667 2.6015 2.7341 2.8990 3.1639 3.7101 2.7528 8.5778 4.7050 

IBk 0.0730 0.0824 0.0465 0.0271 0.0559 0.0231 0.0284 0.0 0 0 0 0.0419 

LinearRegression 11.2387 10.0955 10.2126 9.6797 10.1295 13.2144 10.4735 38.2477 10.1297 

SMOref 10.0226 8.9893 9.0665 8.9401 9.0363 11.5677 8.9673 36.6050 8.7132 

GaussianProcesses 15.2061 15.0741 17.8833 11.9989 10.5405 13.3437 10.9358 38.7237 10.5050 

Table 5 

RMSE with 10-fold cross-validation (3 repetitions). 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 12.6685 12.9133 13.3814 ∗ 14.4111 ∗ 15.4203 ∗ 18.7996 ∗ 13.9174 ∗ 36.7834 ∗ 21.3455 v 

IBk 17.7612 20.8112 ∗ 17.2423 25.0447 ∗ 25.8680 ∗ 25.7792 ∗ 22.7562 ∗ 37.8315 ∗ 29.5936 ∗

LinearRegression 19.3960 18.3234 v 18.5017 v 18.1808 v 18.6416 22.0898 ∗ 18.1092 v 53.6083 ∗ 17.7597 v 

SMOref 20.0636 18.8337 v 18.9237 v 18.6714 v 18.9697 v 23.0016 ∗ 18.8051 v 55.5770 ∗ 18.2458 v 

GaussianProcesses 21.9231 21.7133 24.7083 ∗ 19.4114 v 18.8832 v 22.1160 18.3440 v 54.6361 ∗ 17.8482 v 

Table 6 

MAE with 10-fold cross-validation (3 repetitions). 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 5.8264 6.0012 ∗ 6.2785 ∗ 6.8621 ∗ 7.5242 ∗ 9.0191 ∗ 6.4675 ∗ 23.3071 ∗ 12.6164 ∗

IBk 8.8796 10.0150 ∗ 8.6797 13.1307 ∗ 13.3098 ∗ 12.7038 ∗ 11.0927 ∗ 17.4372 ∗ 14.3159 ∗

LinearRegression 11.2708 10.1276 v 10.2363 v 9.7287 v 10.1738 v 13.2454 ∗ 10.5091 v 38.3269 ∗ 10.6126 v 

SMOref 10.0410 9.0122 v 9.0806 v 8.9702 v 9.0669 v 11.5835 ∗ 8.9962 v 36.7292 ∗ 8.9314 v 

GaussianProcesses 15.3332 15.1402 v 17.9369 ∗ 12.0857 v 10.6294 v 13.3943 v 11.0307 v 38.8031 ∗ 10.9028 v 

Table 7 

Serialized_Model_Size ( × 10 6 bytes) with 10-fold cross-validation (3 repetitions). 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 11.9955 11.9149 v 13.4332 ∗ 12.6169 ∗ 14.7657 ∗ 16.3795 ∗ 14.9757 ∗ 20.3033 ∗ 16.7962 ∗

IBk 0.5064 0.5796 ∗ 0.4330 v 0.8735 ∗ 0.5798 ∗ 0.4329 v 0.5799 ∗ 0.5804 ∗ 0.7081 ∗

LinearRegression 0.1278 0.1274 v 0.1275 v 0.1285 ∗ 0.1285 ∗ 0.1275 v 0.1285 ∗ 0.1278 ∗ 0.1604 ∗

SMOref 0.1734 0.7654 ∗ 0.6609 v 0.1060 ∗ 0.1028 ∗ 0.8805 ∗ 1.1013 ∗ 0.7658 ∗ 7.6196 ∗

GaussianProcesses 168.4590 16 8.4 900 ∗ 168.3855 v 168.7841 ∗ 168.7528 ∗ 168.6051 ∗ 168.8259 ∗ 16 8.4 904 ∗ 175.3427 ∗

Table 8 

UserCPU_Time_training (seconds) with 10-fold cross-validation (3 repetitions). 

#1 #2 #3 #4 #5 #6 #7 #8 TransformedDatabase 

RandomForest 0.9474 1.0349 ∗ 0.7792 v 1.3432 ∗ 0.9714 0.5708 v 0.7802 v 1.6078 ∗ 3.0609 ∗

IBk 0.0 0 05 0.0 0 05 0.0 0 0 0 0.0 0 0 0 0.0 0 05 0.0 0 0 0 0.0016 0.0 0 0 0 0.0 0 05 

LinearRegression 0.0042 0.0109 0.0026 0.0125 ∗ 0.0089 0.0063 0.0115 0.0057 4.2172 ∗

SMOref 31.9255 29.0380 v 26.4307 v 62.5958 ∗ 87.1901 ∗ 75.5521 ∗ 141.1615 ∗ 9.0995 v 1626.4151 ∗

GaussianProcesses 115.4714 115.3620 115.4219 115.5542 110.7714 v 110.4302 v 110.5990 v 110.6505 v 114.0536 
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eaveOneAttributeOut = true . An attribute is evaluated by measur-

ng the impact of leaving it out from the full set. 

.6. Forecasting 

Finally, in this section we analyse the prediction ability of the

orecaster obtained with the selected attributes. We use the class

eka.classifiers.timeseries.WekaForecaster for this task. Forecasting 

an be done from the plugin tab in Weka’s graphical “Explorer”

ser interface, or using the API through a Java program. When

n evaluation is performed, firstly the forecaster is trained on the
ata, and then it is applied to make a forecast at each time point

in order) by stepping through the data. These predictions are col-

ected and summarized, using MAE and RMSE metrics, for each fu-

ure time step predicted. We use in this paper three time units

o forecasts, i.e. all the 1-step-ahead, 2-steps-ahead and 3-steps-

head predictions are collected and summarized. This allows us to

ee, to a certain degree, how forecasts further out in time compare

o those closer in time. 

Tables 10 and 12 show the evaluation of the forecaster, with

he database #1 , on training data (70%) and test data (30%) respec-

ively. The last 500 training data and the first 500 test data of these
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Fig. 4. 1,2,3-step-ahead predictions for Lag-energy+0 evaluated on the last 500 training data with RandomForest - database #1 . 

Fig. 5. 1,2,3-step-ahead predictions for Lag-energy+0 evaluated on the last 500 training data with RandomForest - TransformedDatabase . 

Table 9 

Selected attributes with MOES-RF-MAE (database #1 ) 

and their ranks. 

Input attribute Rank Importance 

Lag_energy-1 1 7.398 

Lag_stMO12_IMI_radmax + 0 2 1.337 

holiday 3 0.367 

Lag_energy-3 4 0.357 

ArtificialTimeIndex 5 0.302 

Lag_stMO12_IMI_radmed-3 6 0.273 

Lag_pr_feels-2 7 0.248 

Lag_pr_temp-2 8 0.172 

Table 10 

Evaluation on training data (3562 instances) with RandomForest - database #1 . 

1-step-ahead 2-steps-ahead 3-steps-ahead Average 

Number of instances 3559 3558 3557 –

MAE 2.6684 4.3897 5.8962 4.3181 

RMSE 5.3008 9.4352 13.0256 9.2539 
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evaluations are also shown graphically in Figs. 4 and 6 respectively.

To verify if the FS process has been effective both for the reduc-

tion of the complexity of the model and for the increase of its pre-

dictive capacity, the forecasting process has also been carried out

on the database TransformedDatabase (with all lagged variables and

all overlay variables). Tables 11 and 13 show the evaluation of the
orecaster with the database TransformedDatabase , and Figs. 5 and

 show graphically the evaluation of the last 500 training data and

he first 500 test data respectively. 

. Analysis of results and discussion 

When observing the results of the experiments carried out us-

ng the proposed methodology, the following statements can be

erived: 

A. Regarding the FS process: 

• As expected, wrapper FS methods show better performance

than filter FS methods, and multivariate FS methods show bet-

ter performance than univariate FS methods. Multivariate meth-

ods can identify interaction amongst features simultaneously,

specially wrapper-based FS methods [58] . To make it possi-

ble, multivariate methods evaluate the relevance of sets of fea-

tures to determine which are the bests according to certain

performance measure for a given task. However, multivariate

wrapper feature selection methods present a high computa-

tion costs, since the number of possible subsets of feature is

very high (2 w , being w the number of features) making the

problem of finding the best subsets to be NP-Hard. To reduce

the computational time, some deterministic search strategies,

such as GreedyStepwise , can be used. The main disadvantage of

these deterministic search techniques is that hidden and basic
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Table 11 

Evaluation on training data (3562 instances) with RandomForest - TransformedDatabase . 

1-step-ahead 2-steps-ahead 3-steps-ahead Average 

Number of instances 3559 3558 3557 –

MAE 4.4041 9.6858 18.2695 10.7865 

RMSE 7.5987 14.0861 25.1676 15.6175 

Table 12 

Evaluation on test data (1526 instances) with RandomForest - database #1 . 

1-step-ahead 2-steps-ahead 3-steps-ahead Average 

Number of instances 1526 1525 1524 –

MAE 10.9941 20.4655 32.7499 21.4032 

RMSE 16.0509 28.7680 44.8343 29.8844 

Table 13 

Evaluation on test data (1526 instances) with RandomForest - TransformedDatabase . 

1-step-ahead 2-steps-ahead 3-steps-ahead Average 

Number of instances 1526 1525 1524 –

MAE 26.7583 34.7768 49.7004 37.0785 

RMSE 36.5563 45.0787 59.8209 47.1520 

Fig. 6. 1,2,3-step-ahead predictions for Lag-energy+0 evaluated on first 500 test data with RandomForest - database #1 . 

Fig. 7. 1,2,3-step-ahead predictions for Lag-energy+0 evaluated on first 500 test data with RandomForest - TransformedDatabase . 
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interactions could be missed due to the way the search space

is traversed [59] . Probabilistic search techniques, such as Mul-

tiObjectiveEvolutionarySearch , can overcome this difficulties by

allowing to generate new subsets in different locations of the

search space guided by a metaheuristic. In this paper, we pro-

pose to use a multivariate wrapper feature selection method

where the search strategy is based on multi-objective evolu-

tionary computation, thus intrinsically overcoming the problem

of interactions between features. 

• For wrapper FS methods, the RandomForest evaluator has

proven more effective than IBk and LinearRegression based eval-

uators. SMOreg and GaussianProcesses are discarded as evalua-

tors for wrapper methods because of their excessive computa-

tional time. Run time of RandomForest is acceptable for wrapper

FS methods setting the number of iterations to 10 (-I 10), and

this method is not very sensitive to the variation of its parame-

ters. However, RandomForest generates regression models larger

than IBk, LinearRegression and SMOreg . 

• IBk is very prone to over-fitting. Although in the evaluation

on full training data the best results have been obtained with

IBk , these results become poor when the evaluation is done on

cross-validation, which indicates that IBk over-fits the regres-

sion models. 

• LinearRegression, SMOreg and GaussianProcesses are not prone to

over-fitting, but it has not been efficient for this problem. 

• MAE has shown better behaviour than RMSE as metric perfor-

mance in evaluators for wrapper FS methods. This can be seen

in Table 5 : the FS method MOES-RF-MAE (database #1 ) pro-

duces better results than the method MOES-RF-RMSE (database

#2 ) when evaluated on cross-validation with RandomForest us-

ing the RMSE metric (12.6685 vs. 12.9133, an improvement of

1.9%). This improvement can also be observed in Table 6 when

both databases are evaluated with the MAE metric (5.8264 vs.

6.0012, an improvement of 2.91% in this case). 

B. Regarding the forecasting process: 

Tables 10 to 13 show how 1,2,3-steps-ahead predictions us-

ing the reduced database #1 improve the 1,2,3-steps-ahead pre-

dictions using the database without performing feature selection.

Using the averages of the 1,2,3-steps-ahead predictions (shown

also in Tables 10 to 13 ) we can calculate the percentage differ-

ences between the average predictions by doing feature selection

and without doing so. With our methodology, MAE is improved

by 59.97% and RMSE by 40.75%, evaluated on training data, and

MAE is improved by 42.28% and RMSE by 36.62%, evaluated on test

data. 

5. Comparison with other methods proposed in literature 

The metrics RMSE and MAE are two of the most common met-

rics used to measure accuracy for continuous variables and they

are appropriate for model comparisons because they express av-

erage model prediction error in units of the variable of inter-

est. However, in order to compare energy consumption prediction

within several papers that do not use the same dataset or the

same values of energy to be predicted it is not useful to compare

such metrics whose magnitude depend on the range of the output

data. 

For that reason, we choose the coefficient of variance of the

RMSE. CVRMSE is a non-dimensional measure calculated by di-

viding the RMSE of the predicted energy consumption by the

mean value of the actual energy consumption. For example, a

CVRMSE value of 5% would indicate that the mean variation

in actual energy consumption not explained by the prediction

model is 5% of the mean value of the actual energy consumption

[60] . 
In the work with similar objectives [22] , the preprocessing is

arried out through correlation and Principal Components Analysis

48] and each day is divided in three moments alluding to occu-

ation: morning, afternoon and night. That way, 3 different mod-

ls are trained and the results are the following: Random Forest

s selected at night and in the afternoon providing a RMSE of 1

nd 3.87 KWh and Bayesian Regularized Neural Networks [61] is se-

ected for the morning with RMSE = 7.08 KWh . In that sense, we

ould say that our FS approach overcomes this method in general.

n the work [2] , the temperature time series together with day of

he week are used in order to estimate energy consumption. Re-

ults show again Random Forest as the outstanding model and the

aily CVRMSE = 9%. 

For current and future comparisons with further research,

e obtained an hourly CVRMSE = 20% and we have also aver-

ged it per day obtaining a daily CVRMSE = 11% for the 1-step

ase. 

Although there are other methodologies for time series fore-

asting, such as Wavelet Transform and fusions (with Artificial Neu-

al Networks, Support Vector Machines , etc. [62,63] ), in this paper

e have compared our proposal with ARIMA , which is one of the

ost used for time series prediction methodologies used in the lit-

rature. 

Multivariate ARIMA : we have used the traditional time series

ethod ARIMA with exogenous regressors [64] . Results are much

orst than using out machine learning oriented approach. Using

ur selected features, mean MAE is 119 and mean RMSE is 126.

his results are way worst than ours but still better than using all

ariables with ARIMA: MAE increases between 35 and 55 KWh and

MSE increases between 37 and 58 Kwh. 

. Conclusions 

In this work we have proposed a methodology for energy mul-

ivariate time series forecasting. The methodology is based on,

rstly, database transformation into a form that standard machine

earning algorithms can process, and then, systematically apply a

et of feature selection methods for regression. The methodology

eals with both lagged and intervention variables, unlike other

orks in the literature where only lagged variables are treated

r the time series problem is univariate. The results of the ex-

eriments carried out show that the proposed methodology effec-

ively reduces both the complexity of the forecast model and their

MSE and MAE in 1,2,3-steps-ahead predictions. The results of our

ethodology improve those obtained with other works reported in

he literature, as well as those obtained with the marima package

or multivariate time series forecasting. 
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Table 14 

Parameters of the proposed feature selectio

Database #Id. Parameters 

#1 -E “weka.attributeSelectio

-B weka.classifiers.trees.Ra

-E DEFAULT – -P 100 -I 10

-S “weka.attributeSelectio

-generations 500 -populat

#2 -E “weka.attributeSelectio

-B weka.classifiers.trees.Ra

-E MAE – -P 100 -I 10 -nu

-S “weka.attributeSelectio

-generations 500 -populat

#3 -E “weka.attributeSelectio

-B weka.classifiers.lazy.IBk

-E DEFAULT – -K 1 -W 0 

-A “weka.core.neighbourse

-A “weka.core.EuclideanDi

-S “weka.attributeSelectio

-generations 500 -populat

#4 -E “weka.attributeSelectio

-B weka.classifiers.functio

-E MAE – -S 0 -R 1.0E-8 -

-S “weka.attributeSelectio

-generations 500 -populat

#5 -E “weka.attributeSelectio

-execution-slots 1 -B wek

-E DEFAULT – -P 100 -I 10

-S ”weka.attributeSelectio

#6 -E “weka.attributeSelectio

-S “weka.attributeSelectio

#7 -E “weka.attributeSelectio

-S ”weka.attributeSelectio

#8 -E “weka.attributeSelectio

-S “weka.attributeSelectio

Table 15 

Parameters of the regression methods. 

Name Parameters 

RandomForest -P 100 -I 100 -num-slo

-V 0.001 -S 1 

IBk -K 1 -W 0 

-A “weka.core.neighbo

-A “weka.core.Euclidea

LinearRegression -S 0 -R 1.0E-8 -num-d

SMOreg -C 1.0 -N 0 

-I “weka.classifiers.fun

-T 0.001 -V -P 1.0E-12 

-K “weka.classifiers.fun

GaussianProcesses -L 1.0 -N 0 

-K “weka.classifiers.fun

-E 1.0 -C250 0 07” -S 1 

Table 16 

Packages and classes for feature selection in Weka used in this paper. 

Name Description 

weka.classifiers.timeseries.core.TSLagMaker Class for creati

weka.attributeSelection Package for fea

weka.attributeSelection.AttributeSelection Class for featur

weka.attributeSelection.ASSearch Abstract class f

weka.attributeSelection.ASEvaluation Abstract class f

weka.classifiers.AbstractClassifier Abstract classifi

weka.classifiers.SingleClassifierEnhancer Abstract utility

weka.classifiers.meta.AttributeSelectedClassifier Meta-classifier

weka.attributeSelection.GreedyStepwise Class for greed

weka.attributeSelection.MultiObjectiveEvolutionarySearch Class for multi

weka.attributeSelection.PSOSearch Class for partic

weka.attributeSelection.Ranker Class to rank a

weka.attributeSelection.WrapperSubsetEval Class for multi

weka.attributeSelection.ConsistencySubsetEval Class for multi

weka.attributeSelection.ClassifierAttributeEval Class for univa

weka.attributeSelection.ReliefFAttributeEval Class for univa

weka.attributeSelection.PrincipalComponents Class for univa

weka.classifiers.trees.RandomForest Class for const

weka.classifiers.lazy.IBk Class that impl

weka.classifiers.functions.LinearRegression Class for using

weka.classifiers.timeseries.WekaForecaster Class that impl
thods for energy time series forecasting. 

perSubsetEval 

Forest -F 5 -T 0.01 -R 1 

-slots 1 -K 0 -M 1.0 -V 0.001 -S1”

iObjectiveEvolutionarySearch 

e 100 -seed 1 -a 0 ”

perSubsetEval 

Forest -F 5 -T 0.01 -R 1 

ts 1 -K 0 -M 1.0 -V 0.001 -S1”

iObjectiveEvolutionarySearch 

e 100 -seed 1 -a 0 ”

perSubsetEval 

T 0.01 -R 1 

inearNNSearch 

 -R first-last””

iObjectiveEvolutionarySearch 

e 100 -seed 1 -a0”

perSubsetEval 

arRegression -F 5 -T 0.01 -R 1 

ecimal-places4”

iObjectiveEvolutionarySearch 

e 100 -seed 1 -a0”

ifierAttributeEval 

ifiers.trees.RandomForest -F 5 -T 0.01 -R 1 

-slots 1 -K 0 -M 1.0 -V 0.001 -S1”

er -T -1.8E308 -N10”

bsetEval -P 1 -E1”

dyStepwise -T -1.8E308 -N -1 -num-slots1”

fFAttributeEval -M -1 -D 1 -K10”

er -T -1.8E308 -N10”

ipalComponents -R 0.95 -A5”

er -T -1.8E308 -N10”

 0 -M 1.0 

h.LinearNNSearch 

nce -R first-last””

-places 4 

supportVector.RegSMOImproved 

01 -W1”

.supportVector.PolyKernel -E 1.0 -C250 0 07”

.supportVector.PolyKernel 

ged versions of target variable(s) for use in time series forecasting 

election 

ction 

rch strategy 

luation 

 extends AbstractClassifier 

ture selection + classification/regression, extends SingleClassifierEnhancer 

wise search strategy, extends ASSearch 

ive evolutionary search strategy, extends ASSearch 

rm optimization search strategy, extends ASSearch 

es in univariate feature selection methods, extends ASSearch 

 wrapper feature selection methods, extends ASEvaluation 

 filter feature selection methods, extends ASEvaluation 

rapper feature selection methods, extends ASEvaluation 

lter feature selection methods, extends ASEvaluation 

lter feature selection methods, extends ASEvaluation 

 a forest of random trees, extends weka.classifiers.meta.Bagging 

s an instance-based learning algorithm, extends weka.classifiers.Classifier 

 regression for prediction, extends weka.classifiers.AbstractClassifier 

s time series forecasting using a Weka regression scheme 

ppendix 
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